Benzene and Aromaticity

B. Pharm. Semester-1 Course Code: 0510210; Session: 2022-2023

Dr. BALAKUMAR CHANDRASEKARAN Professor-Faculty of Pharmacy Philadelphia University-Jordan

Learning Outcomes

- At the end of this lesson students will be able to
 - Define aromatic compounds
 - Understand why this chapter is important
 - Nomenclature of aromatic compounds
 - Explain the structure and stability of benzene
 - Aromaticity and Huckel's rule
 - Aromatic ions
 - Cyclopentadienyl anion and cycloheptatrienyl cation
 - Heterocyclic aromatic compounds: Pyridine and pyrrole
 - Polycyclic aromatic compounds

Objective

The objective of this course is to give to the students of pharmacy the basic knowledge about the organic chemistry.

Aromatic Compounds

- Earlier days of organic chemistry, the word Aromatic was used to describe such fragrant substances [benzene (coal distillate), benzaldehyde (from cherries, peaches and almonds), toluene (from Tolu balsam).
- Later, they are grouped based on their chemical behavior (unsaturated compounds that undergo substitution rather than addition).
- Currently aromatic was distinguished from *aliphatic* compounds by electronic configuration.

Aromatic Compounds

Today, we use the word *Aromatic* refers to the class of compounds that contain six-membered benzenelike rings with three double bonds.

Why this Chapter?

- The reactivity of the substituted aromatic compounds is tied to their exact structure.
 - Aromatic compounds provide a sensitive probe for studying relationship between the structure and reactivity.

Sources and Names of Aromatic Hydrocarbons

- Two sources: Coal and petroleum
- From high temperature distillation of coal tar
- Heating petroleum at high temperature and pressure over a catalyst

Benzene (bp 80 °C)

Toluene (bp 111 °C)

 CH_3

CH₃ CH₃ CH₃

Xylene

(bp: ortho, 144 °C;

meta, 139 °C; para, 138 °C)

Indene (bp 182 °C)

Naphthalene

Biphenyl

(mp 71 °C)

Anthracene (mp 216 °C)

Phenanthrene (mp 101 °C)

(mp 80 °C) © 2007 Thomson Higher Education

Common names: Aromatic compounds

Table 15.1 Common Names of Some Aromatic Compounds			
Structure	Name	Structure	Name
C	H ₃ Toluene (bp 111 °C)	СНО	Benzaldehyde (bp 178 °C)
C	Phenol (mp 43 °C)	CO ₂ H	Benzoic acid (mp 122 °C)
	IH ₂ Aniline (bp 184 °C)	CH ₃ CH ₃	<i>ortho</i> -Xylene (bp 144 °C)
	Acetophenone (mp 21 °C) `CH ₃	H C C H H	Styrene (bp 145 °C)

© 2007 Thomson Higher Education

Naming Aromatic Compounds

- Many common names (toluene = methylbenzene; aniline = aminobenzene)
- Monosubstituted benzenes systematic names as hydrocarbons with *-benzene*
 - $C_6H_5Br = bromobenzene$
 - C₆H₅NO₂ = nitrobenzene, and C₆H₅CH₂CH₂CH₃ is propylbenzene

9

© 2007 Thomson Higher Education

The Phenyl Group

When a benzene ring is a substituent, the term phenyl is used (for C₆H₅⁻⁻)
 You may also see "Ph" or "\u00f6" in place of "C₆H₅"
 "Benzyl" refers to "C₆H₅CH₂⁻⁻"

Disubstituted Benzenes

Relative positions on a benzene ring

- ortho- (o) on adjacent carbons (1,2 relationship on the ring)
- meta- (m) separated by one carbon (1,3 relationship)
- para- (p) separated by two carbons (1,4 relationship)
- Describes reaction patterns ("occurs at the para position")

Naming of Benzenes With More Than Two Substituents

- Choose numbers to get lowest possible values for the 2nd substituent.
- List substituents alphabetically with hyphenated numbers.
- Common names, such as "toluene" can serve as root name (as in TNT).

4-Bromo-1,2-dimethylbenzene © 2007 Thomson Higher Education 2,5-Dimethylphenol

2,4,6-Trinitrotoluene (TNT)

Structure and Stability of Benzene: Molecular Orbital Theory

- Benzene reacts slowly with Br₂ to give bromobenzene (where Br replaces H).
- This is substitution rather than the rapid addition reaction commonly seen for compounds with C=C, suggesting that in benzene there is a higher barrier.

© 2007 Thomson Higher Education

Heats of Hydrogenation as Indicator of the Stability

- Heat of hydrogenation is the quantity of heat evolved when one mole of an unsaturated compound is hydrogenated.
 - The addition of H₂ to C=C normally gives the value of about 28-30 K.cal.

Compound	Heat of hydrogenation in K.cal
Cyclohexene	28.6
Cyclohexadiene	55.4
Cyclohexatriene	85.8

But, Benzene = 49.8 K.cal

Heats of Hydrogenation as Indicator of the Stability

Figure 10.1. Heats of hydrogenation and stability: benzene, cyclohexadiene, and cyclohexene.

Benzene's Unusual Structure

- All its C-C bonds are the same length: 139 pm (picometer) that is between the lengths of regular single (154 pm) and regular double (134 pm) bonds.
- Electron density in all six C-C bonds is identical
- Structure is planar, hexagonal
- C–C–C bond angles 120°
- Each C is sp² and has a p orbital perpendicular to the plane of the six-membered ring.

Benzene's Unusual Structure

- All six carbon atoms and all six 'p' orbital are equivalent.
- Each p orbital overlaps and give 6π electrons are completely delocalized around the ring.

Benzene's Orbital Picture

- Each of the six carbon atoms has a 'p' orbital that can overlap equally well with the neighbouring 'p' orbitals on both sides.
- As a result all C-C bonds are equivalent and benzene must be represented as hybrid of two resonance structures.

Molecular Orbital Description of Benzene

- The 6 p-orbitals combine to give
 - Three bonding orbitals with 6π electrons,
 - Three antibonding with no electrons
- Orbitals with the same energy are said to be 'degenerate'

Six benzene molecular orbitals

Aromaticity

Benzene:-

- Planar hexagon: bond angles are 120°, carbon–carbon bond lengths 139 pm
- Cyclic, and conjugated
- Unusually stable and heat of hydrogenation 36 K.cal. less than the expected cyclohexatriene.
- Undergoes substitution rather than electrophilic addition
- Resonance hybrid as the structure of benzene is intermediate between two line-bond structures.
- But, to describe the aromaticity, **Hückel 4n+2 Rule** is required.

Hückel 4n+2 Rule

- According to a theory devised in 1931 by the German physicist Erich Hückel, a molecule is aromatic, only if it has a planar, monocyclic system of conjugation and contains a total of $4n+2 \pi$ electrons, where *n* is an integer (n = 0, 1, 2, 3, 4....)
- In other words, only molecules with 2, 6, 10, 14, 18, . . . π electrons can be aromatic.
- Huckel's rule, based on calculations a planar cyclic molecule with alternating double and single bonds has aromatic stability if it has $4n+2 \pi$ electrons (*n* is 0,1,2,3,4).
 - For n=1: 4n+2 = 6; **benzene** is stable and the electrons are delocalized.

six π electrons

Hückel 4n+2 Rule

- Molecules with 4n π electrons (4, 8, 12, 16, ...) can't be aromatic, even though they may be cyclic, planar, and apparently conjugated.
 In fact, planar, conjugated molecules with 4n π electrons are said to
- In fact, planar, conjugated molecules with $4n \pi$ electrons are said to be antiaromatic because delocalization of their π electrons would lead to their destabilization.

Examples:-

 π electrons are localized instead of delocalization, so cyclobutadiene is said to be anti-aromatic.

 π electrons are localized instead of delocalization, and the molecule is tub-shaped, so cyclooctatetraene is not aromatic.

Cyclooctatetraene

Four double bonds; eight π electrons

Compounds With $4n \pi$ Electrons Are Not Aromatic (May be Antiaromatic)

- Planar, cyclic molecules with $4 n \pi$ electrons are much less stable than expected (antiaromatic)
- They will distort out of plane and behave like ordinary alkenes
- 4- and 8-electron compounds are not delocalized (single and double bonds)
- Cyclobutadiene is so unstable that it dimerizes by a self-Diels-Alder reaction at low temperature
- Cyclooctatetraene has four double bonds, reacting with Br₂, KMnO₄, and HCl as if it were four alkenes

Aromatic Ions

The 4n + 2 rule applies to ions as well as neutral species

Both the cyclopentadienyl *anion* and the cycloheptatrienyl *cation* are aromatic though they are not 6-membered rings.

The key feature of both is that they contain 6π electrons in a ring of continuous p orbitals

Cyclopentadienyl Anion

- 1,3-Cyclopentadiene contains conjugated double bonds joined by a CH_2 that blocks delocalization
- Removal of H⁺ at the CH₂
 produces a cyclic 6 π-electron system, which is stable
 - Removal of H⁻ or H• generates nonaromatic 4π and 5π electron systems
 - Relatively acidic (p*K*a = 16)because the anion is stable

Aromatic cyclopentadienyl anion with six π electrons

Cycloheptatrienyl cation

- Cycloheptatriene has 3 conjugated double bonds joined by a CH₂
- Removal of "H-" leaves the cation
- The cation has 6π electrons and is aromatic.

© 2007 Thomson Higher Education

Aromatic Heterocycles: Pyridine and Pyrrole

- Heterocyclic compounds contain elements other than carbon in a ring, such as N,S,O,P
- Aromatic compounds can have elements other than carbon in the ring are heterocyclic. Examples: Pyridine, Pyrimidine, Pyrrole.
- Cyclic compounds that contain only carbon are called carbocyclic.

Pyridine

A six-membered heterocycle with a nitrogen atom in its ring π algebra difference of the structure resembles benzene (6 algebra)

 π electron structure resembles benzene (6 electrons) The nitrogen long pair electrons are not part of the around

The nitrogen lone pair electrons are not part of the aromatic system (perpendicular orbital)

Pyridine is a relatively weak base compared to normal amines but protonation does not affect aromaticity

Pyrrole

A five-membered heterocycle with one nitrogen-Pyrrole

 π electron system similar to that of cyclopentadienyl anion

Four sp^2 -hybridized carbons with 4 p orbitals perpendicular to the ring and 4 π electrons

Nitrogen atom is *sp*²-hybridized, and lone pair of electrons occupies a *p* orbital (6 π electrons)

Since lone pair electrons are in the aromatic ring, protonation destroys aromaticity, making pyrrole a very weak base

Polycyclic Aromatic Compounds

- Aromatic compounds can have rings that share a set of carbon atoms (fused rings)
- Compounds from fused benzene or aromatic heterocycle rings are themselves aromatic

© 2007 Thomson Higher Education

6

Naphthalene

Three resonance forms and delocalized electrons

Naphthalene

© 2007 Thomson Higher Education

REFERENCES

Textbooks:

- 1. Organic Chemistry, 9th Edition, 2015, Author: John E. McMurry, Publisher: Cengage Learning, ISBN: 978-1305080485.
- 2. Organic Chemistry, 7th Edition, 2010, Authors: Saibal Kanti Bhattacharjee, Robert Thornton Morrison, Robert Neilson Boyd, Publisher: Pearson India, ISBN: 978-0199270293.
- 3. Textbook of Organic Chemistry, 22nd Edition, 2022, Authors: Arun Bahl & B S Bahl, Publisher: S Chand, ISBN: 978-9352531967.

Supplementary book:

Organic Chemistry, 11th Edition, 2015, Authors: Francis Carey Robert Giuliano Neil Allison Susan Bane, Publisher: McGraw Hill, ISBN: 978-1260148923.